
A4

AD-A243 766I 11l!III 11lIII Ii II 111 iIil~ 111

AFIT/GE/ENG/91D-30 I .r '

Comparison of
AFITPAC versus NOS

and a
Packet Radio Network Design

THESIS

Thomas Alexander Iannelli
Captain, USAF

AFIT/GE/ENG/91D-30

Approved for public release; distribution unlimited

91. 19071a~m~B,,,,,,,,,,] 12 24

December 1991 Master's Thesis

Comparison of AFITPAC versus NOS and a Packet Radio Network ' ..aulation
Design

Thomas Alexander lannelli, Captain, USAF

Air Force Institute of Technology (AU), WPAFB Ot 45433-6583 AFIT/GE/ENG/91D-30

Headquarters Air Force Logistics Command
Logistics Management Support Center/Systems Support
WPAFB 011

Distribution Unlimited

This thesis encompasses two themes: 1) A comparison of the Network Operating System (NOS) software package,
developed by Phil Karn and others, and AFITPAC, written by Marsh and Geier at the Air Force Institute of
Technology. The comparison is based on the Air Force Logistics Command's requirements for thc development
of a Packet Radio Network program. The results of the comparison are a recommendation that use of the NOS
package be pursued because it can meet all twelve of the requirements and complies with five of the Military
Standard Protocols. 2) The design of a personal computer Packet Radio Network Simulator used to analyze
the network performance of AFITPAC and NOS is proposed. The proposal concludes with a discussion of
problems in development of the simulation which used MODSIM lIT", C+ + , and a 80386/25Mhz personal
computer. Recommendations are made for pursuing the simulation effort on other hardware platforms and for
improvements to the design.

Packet Radio, MODSIM, Simulation, NOS 61

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Aaencv Use Only (Leave Blank) Block 12a. Distribution/Availablitv Statement.
Denote public availability or limitation. Cite

Block 2. Report Date, Full publication date any availability to the public. Enter additional
including day, month, and year, if available (e.g. limitations or special markings in all capitals
1 Jan 88). Must cite at least the year. (e.g. NOFORN, REL, ITAR)

Block 3. Type of ReDort and Dates Covered.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 Statements on Technical
Jun 87 - 30 Jun 88). Documents."

Block 4. Title and Subtitle. A title is taken from DOE - See authorities
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code.
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank

DOE - DOE - Enter DOE distribution categories
Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical
element number(s), project number(s), task Reports
number(s), and work unit number(s). Use the NASA - NASA - Leave blank
following labels: NTIS - NTIS - Leave blank.

C - Contract PR - Project
G - Grant TA -Task
PE - Program WU - Work Unit Block 13. Abstract, Include a brief (Maximum

Element Accession No. 200 words) factual summary of the most
significant information contained in the report.

Block 6. Author(s), Name(s) of person(s)
responsible for writing the report, performing Block 14. Subiect Terms, Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(s) and number of pages.
Addresse). Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Oraanization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.- 19. Security Classifications.
performing the report. Self-explanatory. Enter U.S. Security

Classification in accordance with U.S. Security
Block 9. Soonsorina/Monitoring Agency Regulations (i.e., UNCLASSIFIED). If form
Names(s) and Address(es). Self-explanatory. contains classified information, stamp

Block 10. Sponsoring/Monitoring Agency, classification on the top and bottom of the page.
Report Number. (If known)

Block 20. Limitation of Abstract. This block
Block 11. Suplementary Notes. Enter must be completed to assign a limitation to the
information not included elsewhere such as: abstract. Enter either UL (unlimited) or SAR
Prepared in cooperation with...; Trans. of ..., To (same as report). An entry in this block is
be published in When a report is revised, (sa as re antry in th block I
include a statement whether the new report necessary if the abstract is to be limited. If
supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2.89)

Acknowledgments

Words axe hard to find that describe the gratitude I have for the Air Force

Institute of Technology's faculty and staff. They have made my last eighteen months

a difficult but enjoyable time. I would like to recognize individuals by name, Captain

Mark Meh'alic and Mr. Martin DeSimio. These two participated in my thesis, were

my classroom instructors, and supported and counseled me through this difficult

growth period of my life. I would not have what is left of my sanity without my

classmates. There are a few whom I wish I had the time to thank personally: Captain

Matt Foster, Captain Perry Choate, Captain Eddie Bednar, Captain Scott McGuffin,

and Captain Dennis Andersh. Thanks gentlemen, for all your support. I want to

acknowledge the contribution made by my best friends, Captain George Allen Barber

and Captain Ellen Barber. Special thanks to a young woman, Ms. Copper Harding,

who stayed up late to type in the latest modifications to this document.

Thanks, gratitude, and extra special recognition are extended to my best friend,

my mentor, my partner, my wife, Linda Ayers. Without her constant support and

encouragement I would literally not have completed this work.

Thank you Linda

Thomas Alexander lannelli

,AceQsac Y r

* " ,

5::'. -~.:,'ttO

A t

"L t

AFIT/GE/ENG/91D-30

Comparison of

AFITPAC versus NOS

and a

Packet Radio Network Design

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Thomas Alexander Iannelli, B.E.

Captain, USAF

December, 1991

Approved for public release; distribution unlimited

Table of Contents

Page

Acknowledgments.....

Table of Contents.....

List of Figurcs. v

List of Tables. vi

Abstract vii

1. INTRODUCTION 1-1

1.1 Background 1-1

1.2 Problem Description. 1-2

1.3 Summary of Current Knowledge. 1-3

1.4 Assumptions & Scope 1-4

1.5 Organization. 1-5

HI. COMPARISON OF AFITPAC AND NOS 2-1

2.1 Introduction. 2-1

2.2 How NOS Compares to AFITPAC Requirements ... 2-1

2.2.1 Requirements (1), (8), & (9). 2-3

2.2.2 Requirement (2) 2-5

2.2.3 Requirement (3) 2-6

2.2.4 Requirement (4) 2-7

2.2.5 Requirements (5), (6), &z (7). 2-8

2.2.6 Requirement (10). 2-9

111

Page

2.2.7 Requirement (11) 2-10

2.2.8 Requirement (12) 2-10

2.3 Commentary on Comparison 2-11

2.4 Summary 2-14

III. DISCUSSION OF MODEL DESIGN AND METHODOLOGY 3-1

3.1 Introduction 3-1

3.2 Model Design Techniques 3-1

3.3 Overview of the Design 3-4

3.4 The Channel 3-6

3.5 The Nodes 3-15

3.5.1 TNC Module 3-16

3.5.2 PC Module 3-20

3.6 Summary 3-21

IV. CONCLUSIONS & RECOMMENDATIONS 4-1

4.1 Introduction 4-1

4.2 Problems with MODSIM IITM - 4-1

4.3 Recommendations 4-4

Appendix A. DEFINITION OF TERMS A-1

Bibliography BIB-1

Vita VITA-1

iv

List of Figures

Figure Page

2.1. AFLC Requirements for the Packet Radio Network Software . . . 2-2

2.2. The NOS Bulletin Board System Interface Screen 2-4

3.1. Figure Illustrating PDU, SDU, and ICI Passing 3-5

3.2. Connectivity Matrix 3-6

3.3. Example of Nodes passing a frame through the Channel, broadcast-

ing 3-8

3.4. P Matrix 3-10

3.5. Collision Matrix - transmission of frame from C 3-12

3.6. Collision Array 3-12

3.7. Collision Matrix - transmission of frame from B 3-13

3.8. Collision Array - after collision is detected between the transmis-

sions of nodes B and C 3-13

3.9. Connectivity Matrix 3-14

3.10. Node Array 3-15

3.11. Connectivity Matrix for Digital Repeating Example 3-19

3.12. AX.25 packet Address Header for Digital Repeater Example . . . 3-19

3.13. AX.25 packet Address Header for Digital Repeater Example . . . 3-19

3.14. AX.25 packet Address Header for Digital Repeater Example . . . 3-19

V

List of Tables

Table Page

1.1. MODSIM 1 1TM data types and their corresponding C++ data types 1-4

2.1. Summary of how NOS compares to AFLC Requirements 2-12

3.1. The OSI Layers 3-3

3.2. Limits on Packet Transmission Delays 3-9

vi

AFIT/GE/ENG/91D-30

Abstract

This thesis encompasses two themes: 1) A comparison of the Network Op-

erating System (NOS) software package, developed by Phil Karn and others, and

AFITPAC, written by Marsh and Geier at the Air Force Institute of Technology.

The comparison is based on the Air Force Logistics Command's requirements for the

development of a Packet Radio Network program. The results of the comparison are

a recommendation that use of the NOS package be pursued because it can meet all

twelve of the requirements and complies with five of the Military Standard Proto-

cols. 2) The design of a personal computer Packet Radio Network Simulator used to

analyze the network performance of AFITPAC and NOS is proposed. The proposal

concludes with a discussion of problems in development of the simulation which used

MODSIM ITM , C+ + , and a 80386/25Mhz personal computer. Recommendations

are made for pursuing the simulation effort on other hardware platforms and for

improvements to the design.

vii

Comparison of

AFITPAC versus NOS

and a

Packet Radio Network Design

I. INTRODUCTION

1. 1 Backgrouind

The Air Force Logistics Command (AFLC) sponsored software development

work at the Air Force Institute of Technology (AFIT) for Packet Radio Networks

(PRNET) in 1988(14, 20), 1989(15) and 1990(10). A PRNET is a collection of

computers using radio stations as their communications media. PRNETs are used

to connect computers that are unable to be hard wired. For example, portable or

mobile computers and systems located in areas where telephone lines are of poor

quality, out of service, or non-existent. The AFIT work resulted in Marsh creating a

software package, called AFITPAC, which provided a menu driven user interface to

the PRNET(15). This mabled the user to perform tasks, such as transferring files,

setting terminal node controller (TNC) parameters., and establishing connections,

just by using the finction keys displayed at the bottom of the screen. Then, in 1990,

Geier modified the package to include an automatic/adaptive routing algorithm(10,

11). The routing algorithm builds a table of Packet Radio Units (PRUs) available on

the network and the routes used to get to them(10, 11). This table is then displayed

on screen to facilitate user connections to remote PRUs. Prior to this change, the user

had to have knowledge of the network topology in order to establish a connection,

and the user was required to enter the routing table manually into the computer.

1-1

In order for this package to work it needs to transmit and receive special

packets on the network. These packets contain a control character at the beginning

of the data, which marks the packet as routing information. The receiving Packet

Radio Unit (PRU) can then process this information to modify its routing table.

Geier's packets travel the network just as other information packets do and add

overhead traffic, for route management, to the normal PRNET traffic. Geier tested

his software in the limited AFIT PC laboratory environment using three PRUs.

He demonstrated that the routng algorithm performed as expected on the three

PRUs. However, the AFLC PRNET was designed for (isaster relief efforts and

wartime co)ntingencies(10, 15). This implies a PRNET composed of a large number of

portable units. If the routing algorithm's overhead traffic increases drastically un(ler

these conditions, it woul(d interfere with vital information traffic on the PRNET,

resulting in long delays in message transportation or blocked connections. A traffic

flow analysis of Geier's software on the AFLC PRNET must be completed before

confidently placing the package il the operational environment(10). The information

gathered from such an analysis could be used in the development of software packages

that are more channel efficient.

1.2 Problem Description

The challenge is to develop a method of traffic flow analysis for software pack-

ages used in a packet radio network. One possible solution would be to coordinate

with local anatcur radio operators to use their PRUs. After some field research, the

author determined that the local amateurs have permanent radio stations in their

homes. If they have portable radio stations, in general their computer systems are

not portable. This type of fixed topology PRNET would not represent the opera-

tional environment desired. because the PRUs need to be portable, and therefore,

makes a poor test condition. Another possibility would be to create a computer

model of the PRNET that would allow for both stationary and portable PRUs.

1-2

Modeling tools are hard pressed to keep up with the dramatic changes
in the nature of computer networks and their application environments.
... Modelers purchase their own tools or services, but most packages only
solve a piece of the computer networking puzzle. Much of the effort goes
into models that try to portray the operation of complex networks and
architectures supporting a wide variety of heterogeneous equipment and
software.(16)
Mitchell G. Spiegel

As Spie,'el stated, most network modeling tools do not accommodate all the

requirements of a particular modeler's project. The biggest limitation to network

modeling tools is they can not incorporate other software packages. Therefore, the

problem is to design and develop a computer model of a packet radio network with

changing topology that will interface with Geier's automatic/adaptive routing algo-

rithm package and Karn's Network Operating System(21), NOS package. NOS is

examined as a possible alternative to AFITPAC because it implements many of the

standard applications of Defense Data Network (DDN) hosts and its C source code

is readily available.

1.3 Summary of Current Knowledge

Most of the significant work in the packet radio network simulation is spon-

sored by Defense Advanced Research Projects Agency (DARPA). The work includes

a package called PC-NETSIM developed for DARPA in 1989, by Rockwell Inter-

national Collins Defense Communications(1, 2). This discrete-event simulator pro-

vides an artificial execution environment for the actual protocols to be used in the

PRNET(2). Unfortunately, PC-NETSIM, simulates a packet radio network that

uses different radio system technology, specifically a direct-sequence spread spec-

trum system(l, 2), than the AFLC PRNET, which uses Audio-Frequency-Shift-

Keying (AFSK) broadcast using Frequency Modulation (FM)(12). Furthermore,

PC-NETSIM simulates a system using a Pure-Aloha channel access scheme and the

AFLC PRNET uses a Carrier Sense Multiple Access (CSMA) scheme. The differ-

1-3

ences in the performance of these two modulation and channel access schemes would

cause the simulation results to represent the performance of the software packages

inaccurately. For a discussion of the performance differences between Pure-Aloha

and CSMA see Tanenbaum(19).

1.4 Assumptions & Scope

This project is written using C++ and MODSIM HTM1. These languages were

chosen for the following reasons. They are portable to all of the hardware platforms

currently in use in PRNETs(4). MODSIM IITM also provides an interface to C++

which allows the original software modules of Geier's software to be used. However,

MODSIM IITAI uses different data types than C++ requiring modifications to some

variables in the AFITPAC software. Table 1.1 shows the correspondence of data

types between the two languages. Each simulated PRU will be running its own copy

MODSIM ITM C + +

INTEGER long
REAL double

BOOLEAN unsigned char
CHAR unsigned char

STRING char * to "C++"
ARRAY OF CHAR string from "C*+"

ANYREC or ANYOBJ void * or int *
enumeration unsigned char

Table 1.1. MODSIM ITM data types and their corresponding C++ data types

of the AFITPAC software. This may cause conflicts with the video display.

Therefore, all functions causing video input/output will be removed. Problems

may also arise with the AFITPAC software's use of the file system to store infor-

mation, because all of the PRUs will be trying to read and write to the same file.

Any of AFITPAC's functions that perform file I/O will be modified to accept an

'MODSIM II is a trademark and service of CACI Products Company

1-4

argument for a filename to correct this problem. Thus allowing the simulation to

pass unique filenames to each copy of the software.

The researcher's computer model will simulate the portable radio units, the

radio signal connectivity between PRUs, and TNC functions. For the purposes of this

project, all PRUs are assumed to have equal transmitter and receiver capabilities and

the portable units are off the air while relocating, to avoid the problem of connection

failures due to a change in network topology.

1.5 Organization

The remaining thesis chapters are organized as follows:

" Chapter II is a comparison between AFITPAC(10), a software package written

by Marsh and Geier, and NOS(21), a software package written by Phil Karn

and others.

" Chapter III is a discussion of the model design and methodology.

" Chapter IV concludes with findings and recommendations.

1-5

II. COMPARISON OF AFITPAC AND NOS

2.1 Introduction

In the process of designing a PRNET simulation, other packet radio programs

were examined. Looking at other software packages revealed similarities in their

structures and performance. The similarities provided a better concept of what

components a PRNET model needed. The name of a particular software package

was repeatedly mentioned during the search for information on packet radio tech-

nology . The package is the Network Operating System which is called NOS in it

latest version. Older versions of the package were called NET or KA9Q. A copy

of the source code was obtained from the DDN, from host ucsd.edu, and the exe-

cutable was downloaded from CompuServe@. This version of the program is called

NOSVIEW, and is packaged by Ian Wade(21). NOSVIEW adds a Terminate-and-

Stay-Resident (TSR) program to NOS which allows the user to view any part of the

NOS documentation on-line. Although this is not the only public domain packet

radio software available, it does seem to be the most comprehensive. The fact that

NOS incorporates many of the different protocols and applications currently used

on packet radio networks and on the DDN and its ability to act as a gateway be-

tween the two networks(14) makes it a possible alternative to AFITPAC. Therefore,

a comparison of how both packages meet the AFLC software requirements follows.

2.2 How NOS Compares to AFITPAC Requirements

The list below enumerates the requirements for the AFLC packet radio network

as presented by Marsh work(15).

2-1

1. The system should be easy to use with only minimal training.

2. The network routing algorithm should provide a route for transmission of messages even
when there is not a direct route available between source and destination.

3. Messages will be encrypted for transmission.

4. The system will provide archival storage of messages that are transmitted or received.

5. The system should provide a transmit message queue so that multiple messages can be
transmitted with little operator intervention. The queue should be able to hold at least
twenty messages.

6. Queued messages that are not able to be transmitted will be flagged for the operators
attention.

7. The system should provide for reception messages whether the position is attended or not.

8. The operator interface to the program should be menu driven with a data window so the
operator can see what is being transmitted or received.

9. The operator interface should have help screens as necessary.

10. A converse mode should be provided to allow interactive communication between two node
operators.

11. A direct connection capability between the TNC and the GILLAROO, via the packet radio
system computer, should be incorporated into the system software to allow for a secure
converse mode for the system. I

12. A system operator handbook will be provided. It will include system wiring diagrams and
a software user's guide.

Figure 2.1. AFLC Requirements for the Packet Radio Network Software

The researcher will demonstrate how the NOSVIEW implementation of NOS

meets each of the AFLC requirements. For clarity it is useful to define a number of

terms before beginning the comparison.

GILLAROO - cryptographic personal computer board that encrypts data, by using

a key. The data is converted into pairs of output characters. All

characters are ASCII printable text, the only control characters are

CTRL-Q, CTRL-S, and CTRL-Z(15).

KISS - a protocol for computer to TNC communications. It allows the

computer to control all of the AX.25 functions and the contents of

the High Level Data Link Control (HDLC) frames transmitted and

received(7).

2-2

RFC - "(Request for Comments) the name of a series of notes that contain

surveys, measurements, ideas, techniques, and observations, as well

as proposed and accepted Internet protocols standards. RFCs are

edited but not refereed. They are available across the Internet.(8)"

PK-232 - Z-80 based TNC manufactured by Advanced Electronics Applica-

tions, Inc.

For the purposes of this comparison Captain Marsh's evaluation of AFITPAC's abil-

ity to meet each requirement will be used. All material relating to AFITPAC is

directly quoted from Marsh(15) and the figures and tables referenced therein axe not

provided.

2.2.1 Requirements (1), (8), & (9) (1) The system should be easy to use

with only minimal training. (9) The operator interface should have help screens as

neccssary. (8) The operator interface to the program should be menu driven with a

data window so the operator can see what is being transmitted or received.

AFITPAC - (1) The system is relatively easy to use but some knowledge of how packet

radio operates is necessary to get the most advantage of the system. This in-

formation is supplied through a brief users manual contained on the AFITPAC

program disk.(15) (8) The program is menu driven (figure 6) via the function

keys which are displayed across the bottom of the screen. A data window

covers the upper portion of the screen (lines 3 through 18, 80 columns) and

is used for displaying all received/transmitted data along with any system

command responses(15). (9) Help screens explaining function key choices

are available (press F10) for all menus. The main menu help screen also

has a second screen listing some of the PK-232 commands and how to use

them. All screens can easily be changed by changing the screens listed in the

HELP.C module and recompiling the program(15).

2-3

NOS - The user has t-n different ways in which to interact with the system; 1) a

menu driven bulletin board system, see Figure 2.2, and 2) issuing commands

at the net> prompt. Both interfaces use the computer's display screen and

each session uses all 25 lines to display transmitted and received information.

The bulletin board system is straight forward and easy to use with detailed

(?)help (A)rea (B)ye (C)hat (D)ownload (E)scape (F)inger
(G)ateway (H)elp (I)nfo (J)heard (K)ill (L)ist (N)etrom
(R)ead (S)end (T)elnet (U)pload (V)erbose (W)hat (Z)ap

Figure 2.2. The NOS Bulletin Board System Interface Screen

help available for each command. This help is supplied through the use of

the Help command. The syntax is H command, with command as any of

the menu choices. NOS then displays the contents of the command.HLP

file. This option is available whether attached locally or from a remote

site to the system. The net> command prompt offers a listing of the top

level commands available by typing help or ?. Slightly more detailed help is

available on each command by typing command ?. The net> command

line is only available on the machine that is running NOS, and not available

from remote sites.

The most detailed level of help is available by using the NOSVIEW TSR. To

activate the TSR press the Right Shift key and the Spacebar simultaneously.

Then select the file to be viewcd. Each file in the NOSVIEW directory is

named after a command in NOS and contains the entire documentation for

the command as compiled by Ian Wade(21).

The individual responsible for installing the NOSVIEW package needs to be

knowledgeable about packet radio network and Transmission Control Proto-

col (TCP)\Internet Protocol (IP) network operations. There are a number

of parameters that can be set that will have an impact on the performance

of the network. Help in setting up and configuring NOS will soon be avail-

able in the form of book titled, NOSintro: The Definitive Primer for the

KA9Q Network Operating System, by Ian Wade, that will be published late

2-4

in 1991(21). Currently a complete copy of the NOS manual is distributed

with the package in the form of a computer file. It is also available from the

DDN host ucsd.edu in various document formats including Postscript and

nroff/troff.

All of the TNC functions are available in NOS, however, they are imple-

mented in software. There are no user generated parameters as far as the

actual hardware TNC is concerned. The user communicates with the soft-

ware TNC using commands similar to those used in a hardware TNC, with a

syntax change that commands are preceded by ax25. The software commu-

nicates with the hardware TNC using the Keep-It-Simple-Stupid(7) (KISS)

protocol.

2.2.2 Requirement (2) The network routing algorithm should provide a route

for transmission of messages even when there is not a direct route available between

source and destination.

AFITPAC - The "digipeat" option of the TNC provides this function directly to the

system. The operator can limit who is allowed to use the repeat via the

DFROM command of the PK-232 which can be set in the START.TXT file

that loads when initializing the system(15).

NOS - The NOS package provides three distinct routing algorithms enabling deliv-

ery of messages to PRUs other than the nearest neighbors1 . They are the

AX.25 digital repeating, Routing Information Protocol 2 (RIP), and Radio

Shortest Path First Protocol (RSPF). NOS uses the AX.25 syntax con-

nect interface NODE1 via REPEATER1 REPEATER2 to establish

a connection to NODEL. The interface argument is used to specify which

hardware interface is to be used in establishing the connection. NOS allows

'The term nearest neighbor refers to those PRUs who are accessible without passing through
any repeaters

2 Information can be found in RFCs # 1058

2-5

for multiple connections to be active simultaneously on different interfaces.

NOS also adds this route to the AX.25 routing table automatically(21).

RIP is the same protocol utilized on the DDN which allows for the applica-

tions such as Simple Mail Transfer Protocol3 (SMTP), File Transfer Protocol

(FTP), Post Office Protocol 4 (POP2), telnet, and rlogin. It automatically

updates the Address Resolution Protocol (ARP) tables, and makes it pos-

sible to monitor the RIP activity by using the RIP trace level command.

This will display three levels of RIP activity at the local PRU; level 1 - only

RIP packets causing changes in the routing table are displayed, level 2 - all

RIP packets are displayed, level 0 - disables RIP tracing.

In RSPF protocol, each PRU determines which other PRUs are its neighbors

by listening for a special message sent out by other PRUs running RSPF.

When a PRU hears this Router-to-Router-Hello (RRH) message it deter-

mines whether the link is bidirectional by pinging the other station. The

quality of the AX.25 link is determined by comparing the number of sent

and received frames on the channel from the particular node. The routing

table not only contains a list of the local PRU's neighbors, but a list of all

the other PRUs' neighbors as well(21). The size of this table is limited by

setting the horizon, in terms of hops. For example, if the horizon was set

to 2 hops, the routing table would contain only information about the local

PRU's neighbors and their immediate neighbors.

2.2.3 Requirement (3) Messages will be encrypted for transmission.

AFITPAC - Files are encrypted by the GILLAROO and can either be saved on disk

for later transmission or, via the secure link option, be directly sent to the

distant station for immediate reception and decryption(15).

3 lnformation can be found in R.FCs # 788, 821, 1090
4 lnformation can be found in RFCs # 918, 937, 1081, 1082, 1225

2-6

NOS - ASCII text files can be sent in NOS using Simple Mail Transfer Protocol s

(SMTP) and both binary and text files can be sent using File Transfer Pro-

tocol (FTP).

This would allow a file encrypted by the GILLAROO and saved to disk to

be transmitted using either SMTP or FTP.

NOS provides the functions uuencode and uudecode found in the Transmis-

sion Control Protocol (TCP)\Internet Protocol (IP) environment. Uuencode

takes a binary file and encodes into an ASCII text files so that it may be

sent by SMTP. When the file is received, it can be run through uudecode

to obtain the original binary file. A common practice on the DDN is to use

SMTP to transfer large binary files, i. e. executables or images. They can

be encoded to ASCII, then split into a number of smaller files, and sent in

a mail message. At the receiver the messages are saved to system files, the

files are edited to remove all of the mail header information, and then the

files are concatenated, in appropriate order, to form the original encoded file.

The file is the run through uudecode to obtain the original binary file.

2.2.4 Requirement (4) The system will provide archival storage of messages

that are transmitted or received.

AFITPAC - Transmitted messages are saved on computer disk at the receiving end

by either the file capture option or the automatic file save function of the

program (note that this does not operate in the Secure link mode)(15).

NOS - If a NOS PRU is running and the Simple Mail Transfer Protocol6 (SMTP)

then any messages sent to the users of the PRU will automatically be placed

in their mailbox. The mailbox is nothing more than a designated directory

for each user of the system. The next time the user connects to this PRU's

bulletin board, they will be notified there is mail waiting for them. They

Slnformation can be found in RFCs # 788, 821, 1090
'lnformation can be found in RFCs # 788, 821, 1090

2-7

can read the message, delete the message, reply to the message, forward

the message, or save the message to another file. If the destination NOS

PRU is not running, then SMTP will send a message back to the originator

informing him that the message was undeliverable and may offer a possible

explanation..

NOS also provides the Post Office Protocol' (POP2) application intended

for use in networks where hosts are normally off when not in use(21). POP2

allows mail to be collected at a mailserver which is always on so, when a client

PRU powers on, it will request mail from the mailserver. The client receives

all of the mail destined for it and then distributes it to its users' mailboxes.

This type of mail delivery avoids the problem of SMTP not being able to

deliver mail to PRUs that are down.

2.2.5 Requirements (5), (6), & (7) (5) The system should provide a trans-

mit message queue so that multiple messages can be transmitted with little operator

intervention. The queue should be able to hold at least twenty messages. (6) Queued

messages that are not able to be transmitted will be flagged for the operators atten-

tion. (7) The system should provide for reception messages whether the position is

attended or not.

AFITPAC - (5) - A transmit Queue of 20 files is presently in the system. A larger

queue can be created by changing the TQ_MAX in the TXFILE.C module

and recompiling the entire program(15). (6) - Files that can not be trans-

mitted will cause the system to stop the transfer and alert the operator by

sounding the beep at the computer. The operator can then continue sending

the remaining file in the queue simply by pressing the start TX key (F3)

again(15). (7) If a station is unattended, files will automatically capture

via the automatic file save function built into the transmit and receive mod-

ules of the program. The receive module examines every character received

7Information can be found in RFCs # 918, 937, 1081, 1082, 1225

2-8

and if, it is one of the special function control codes (CTRL-E, CTRL-J, or

CTRL-Q), other actions are initiated such as auto-file save or the remote

"station heard" command(15).

NOS - If the Simple Mail Transfer Protocol' (SMTP) feature of NOS is used,

then the only limitation to the number of files that a can be queued for

transmission is the amount of free disk space. SMTP uses the directory

N:\NET\SPOOL\MQUEUE to store messages waiting for transmission.

The advantage to this method is if a PRU goes down during transmission,

the contents of the message and of the outbound queue are not lost. When

the PRU comes back up, it can resume transmission of all unsent messages

without user intervention.

If the File Transfer Protocol (FTP) feature of NOS is used; there is effec-

tively no limitation on the number of files that can be queued for transmis-

sion. Queuing can be accomplished by using the FTP commands. input and

mget. However, the method is vulnerable to PRUs going down, meaning

that if transmission is aborted, the user must reissue the request.

2.2.6 Requirement (10) A converse mode should be provided to allow znter-

active communication between two node operators.

AFITPAC - Operators can converse directly with each other just by connecting with

another station and then typing on screen. When the operator hits the return

key all of the typed data will be sent out as a packet(15).

NOS - NOS provides two methods for conversations between stations; 1) through

the normal procedure of establishing a AX.25 connection between the two

stations 2) through the Chat command available in the bulletin board sys-

tem. In both cases, whatever is typed on the screen is transmitted to the

other PRU when a carriage return is entered.

8lnformation can be found in RFCs # 788, 821, 1090

2-9

The Chat function is similar to the PHONE application available on VAX/VMS

systems and the TALK application on Unix systems. Except Chat mode is

a direct line to the system operator whose bulletin board the user is logged

into. When a user selects Chat, the system notifies the operator of the

request. If he is available he can converse with the user requesting to Chat.

2.2.7 Requirement (11) A direct connection capability between the TNC and

the GILLARO0, via the packet radio system computer, should be incorporated into

the system software to allow for a secure converse mode for the system.

AFITPAC - For packet computers with 2 serial ports and equipment set up as in con-

figuration 1, the operators can converse securely. The operator sets up a

connection and both ends go into the secure link mode. All data typed in

at the TEMPEST computer is then encrypted by the GILLAROO, passed

through the packet computer to the PK-232. When the buffer is full (128

bytes of user typed data) or when the return on the packet computer key-

board is pressed, a packet will be sent to the other station where it will be

decrypted and displayed on the TEMPEST computer screen.

NOS The function of requirement (11) is not native to the NOS package. However,

further examination and modification of the Point-to-Point Protocol9 (PPP)

could provide this capability. PPP allows for network connections to be made

over serial lines and this could be exploited to create the required service.

2.2.8 Requirement (12) A system operator handbook will be provided. It will

include system wiring diagrams and a software user's guide.

AFITPAC - The adequacy of the documentation will be determined by the thesis spon-

sor upon completion of this thesis(15).

9Information can be found in RFCs # 1134, 1171, 1172. 1220

2-10

NOS - The NOS documentation is a living document, which is continually updated

as new features are added. Since the source code for all functions is provided,

and the software is free to the public, a myriad of authors have written code

and documentation. Ian Wade's book(21) is the first published attempt at

formalizing the documentation. All of the documentation is available from

a user's manual computer file, distributed with the software.

2.3 Commentary on Comparison

Table 2.1 provides a summary of how NOS compares to the AFLC require-

ments. There are three requirements, (3), (8), and (11), that NOS does not meet

that warrant further discussion. Since the C source code is available, modifications

could be made to the NOS package to bring it more in line with the AFLC re-

quirements. In regards to meeting requirement (3), there are two ways: 1) save

the GILLAROO encryption devices output to a disk file and transmit the file using

either File Transfer Protocol (FTP) or Simple Mail Transfer Protocol'0 (SMTP) 2)

create a software module that would encrypt the message files and add it to the NOS

package. This second solution would also allow NOS to meet requirement (11), the

keyboard input could be piped through the encryption module before transmission.

As for requirement (8), the command line prompt could be replaced with a menu

system. Using today's C programming tools for window environments an interface

could be created to take advantage of NOS's multiple session capability and provide

the menu driven interface.

There are other factors that should also be considered in this comparison.

First, AFITPAC is limited to the area that can be covered by the packet radio net-

work that it supports. AFITPAC nodes that become isolated due to problems with

radio transmission have no other recourse than to hope that broadcasting conditions

improve. NOS nodes have the option of using DDN to "wormhole" the transmission

t0 lnformation can be found in RF's # 788, 821, 1090

2-11

Does
Req. Meets Not

Req. Meet
Req. Comments

(1) X The bulletin board system is relatively easy
(8) X X to use. It is menu driven using single
(9) X letter commands. Help is available for each

command typing Help command.

The command prompt interface is slightly more
difficult to use. However, experienced DDN
users will find it a familiar interface.
Three levels of help are available:
1. Typing help or ? lists
the commands accessible.
2. Typing the command followed by a ?
lists the parameters acceptable for the
command.
3. Using NOSVIEW to read the detailed
documentation for each command.

(2) X Three routing methods are provided:
1. RIP
2. RSPF
3. AX.25 digital repeating

(3) X NOS does not provide any data encryption services.
(4) X NOS provides SMTP services which do not require
(5) X operator intervention to transmit and receive
(6) X messages. SMTP uses disk directories for its
(7) transmit and receive queues, allowing for queue sizes

as large as the disk space will support.
If a message is unable to be delivered SMTP returns
a message to the originator indicating the problem.
This message is treated just like any other piece of
mail and will exist until the originator deletes it.

(10) X Converse mode is provide by two means:
1. AX.25 connections
2. Chat command on the bulletin board system.

(11) X NOS does not provide a transparent link from
another serial that would allow the TEMPEST
machine with the GILLAROO card to use the PRNET.

(12) X Comparing the AFITPAC documentation with the
NOS documentation, NOS meets the users requirements.

Table 2.1. Summary of how NOS compares to AFLC Requirements

2-12

of AX.25 packets encapsulated in Internet Protocol (IP) packets(21). The protocol

used for this is declared in RFC1226. This would allow groups of NOS packet radio

networks to be linked via DDN cabling. The procedure in NOS for making this type

of connection is connect destination via locaLaxip-call remote-ax25call, which is

the same as an AX.25 connection made via digipeaters. Wormholing AX.25 over

DDN or similar networks dramatically increases the range of the NOS packet radio

networks.

Second, both packages supply complete C source code listings. Since AFITPAC

is a much smaller package, there is less code to understand before making modifica-

tions. NOS has many modules written by scores of authors. The version of the source

code obtain for this project has approximately 270 program files, header files, and

libraries. These factors cause a problem for anyone who needs to make modifications

to the package as Lebano found(14).

The design and implementation of the DES [Data Encryption Stan-
dard] Enhanced KA9Q [NOS] Internet package was an evolutionary pro-
cess. this research project was undertaken with a minimal understanding
of the TCP/IP protocols and no knowledge of packet radios and the C
programming language. In addition, the KA9Q [NOS] package, although
very well structured, did not have any true design documentation other
than a user's manual and had limited documentation in the source code.
This presented a learning curve which had to be overcome before design
modifications could be achieved.(14)

Third, AFITPAC is the property of the United States Air Force, allowing for

the unfettered distribution and modification of the software. NOS is currently free

for distribution to the public for non-commercial use. However, all portions of the

package are copyrighted by the authors. This means that the Air Force's use and

modification of the NOS software is best determined by the lawyers.

2-13

2.4 Summary

If there are no legal barriers to using the Network Operating System, NOS,

then this should be the package of choice. It satisfies the AFLC requirements and

in those areas that it falls short, it was shown how NOS could be modified to meet

them. NOS provides the services spelled out in five Department of Defense (DOD)

Military Standard Protocols: 1) MIL-STD-1777 Internet Protocol (IP), 2) MIL-

STD-1778 Transmission Control Protocol (TCP), 3) MIL-STD-1780 File Transfer

Protocol (FTP), 4) MIL-STD-1781 Simple Mail Transfer Protocol (SMTP), and 5)

MIL-STD-1782 TELNET Protocol(17). These standards are used throughout all

DOD organizations. Therefore, the use of NOS could be widely accepted because of

its familiarity to computer network users DOD wide.

Finally, NOS provides many applications to its users, allows them to have mul-

tiple concurrent sessions, and has many services that run unattended. An active NOS

node could easily generate a tremendous amount of network traffic. An AFITPAC

node however, only allows for one session to be running at a time. While a node

is transferring a file the operator cannot connect to another node. Also AFITPAC

has only one service that runs unattended, which is Geier's routing algorithm. The

file capture routine of AFITPAC can receive fies while the station is unattended,

but someone must initiate the transmission and once the transmission is complete

the function terminates. Both Geier's routing algorithm and the NOS unattended

services can be influenced by the operators, but they run continuously while the node

is active. Consequently, a comparison has to be made between NOS and AFITPAC

to determine which yields better channel usage for the amount of services provided.

Is the fact that NOS provides all of these services outweighed by a saturated packet

radio network because of them? Does AFITPAC poorly use the available channel

capacity or provide such limited services that it does not meet user's needs? The

answer to these questions lies in the task about to be undertaken: the design of a

simulation to analyze the performance of packet radio network programs.

2-14

IlI. DISCUSSION OF MODEL DESIGN AND METHODOLOGY

3.1 Introduction

This chapter begins with a discussion of modularity and how it relates to both

computer communications networks and simulations. Dr. Bernard Zeigler's concepts

of modules with ports which communicate via messages axe introduced(22). The

messages are generated by both external and internal events and the components

are responsible for processing the messages. Then by examining the physical and

data link layers in the Open System Interconnection (OSI) network model, as they

pertain to a PRNET, a design for a packet radio network simulator is derived. The

development of simulation modules to mimic the layers above the data link layer are

not necessary because these are the functions being analyzed.

3.2 Model Design Techniques

Any discussion that involves computer communications networks and simula-

tions begins with the topic of modularity. Modularity is defined as "the ability of a

system to be expanded to [be] changed with minimal difficulty.(6)" For the purposes

of this discussion, modularity takes this definition one step further saying that it

is achieved by using discrete components or modules. Zeigler discusses some of the

benefits and characteristics of a simulation designed using discrete components(22).

There are two significant points made in the article. First, a component possesses

input and output ports through which it interacts with its environment. In the

discrete-event case, the events determine what values will appear on these ports.

The external events cause activity on the input ports of these components, which

then respond to this activity. During the response the component may change its

state causing internal events, which may cause activity on the output ports. Second,

a benefit of modular construction is that components can be independently tested.

3-1

The ability to do such testing at each stage of development improves the reliability

and efficiency of the final simulation model.(22)

The ideal of modularity motivated the International Standards Organization

(ISO) in 1984 to adopt its seven layer model for computer communications networks(18).

The communications functions are partitioned into a vertical set of
layers. Each layer performs a related subset of the functions required
to communicate with another system. It relies on the next lower layer
to perform more primitive functions and to conceal the details of those
functions. It provides services to the next higher layer. Ideally, the layers
should be defined so that changes in one layer do not require changes in
the other layers(18).
- Stallings

This is the reference model used to define standards for linking heterogenous com-

puter systems.

Each layer in this communications model can be thought of as a discrete sub-

component. All that each subcomponent needs to know are: the services provided

by the other subcomponents, and which port should send messages to obtain such

services. For the purpose of this discussion, we axe mainly interested in the first four

layers of the model in Table 3.1(18), namely physical, data link, network, and trans-

port. These will be used to explain the OSI terminology. The OSI model calls the

ports of each layer service access points (SAPs)(18, 19). The transport layer sends

a service request to the network layer across their common interface at the SAP.

The service request is in the form of an Interface Data Unit (IDU). The IDU con-

sists of a Service Data Unit (SDU) and Interface Control Information (ICI)(18, 19).

The network layer examines the contents of the ICI to determine the exact type of

services requested. The network layer will determine the length of the SDU from

tLe transport layer, and fragment it, as necessary. Then each fragment receives its

own network layer header to form a Protocol Data Unit (PDU). The network layer

makes a service request to the data link layer via a SAP. The network layer will pass

3-2

Layer Name Description
1. Physical Concerns the transmission of unstructured bit stream

over physical medium; deals with the mechanical,
electrical, functional, and procedural characteristics
to access the medium.

2. Data Link Provides for the reliable transfer of information
across the physical link; sends blocks of data
(frames) with the necessary synchronization, error
control, and flow control.

3. Network Provides upper layers with independence from the data
transmission and switching technologies used to connect
systems; responsible for establishing, maintaining, and
terminating connections.

4. Transport Provides reliable, transparent transfer of data between
end points; provides end-to-end error recovery and flow
control.

5. Session Provides the control structure for communication between
applications; establishes, manages, and terminates
connections (sessions) between cooperating applications.

6. Presentation Provide independence to the application processes from
differences in data representation (syntax).

7. Application Provides access to the OSI environment for users and
also provides distributed information services.

Table 3.1. The OSI Layers

3-3

its PDU as an SDU to the data link layer along with some ICI. See Figure 3.1 for

clarification.

Note that on the receiving end of the communications network, each layer

receives a PDU from its peer layer at the transmitting end. The network layer would

have received all of the PDUs from the transmitting network layer and recombined

them, as necessary, into a PDU for its transport layer. The receiver's transport layer

would be signaled by the receiver's network layer that data was available for it at

the SAP. The transport layer would then process the PDUs and pass a PDU up to

the session layer in a similar fashion.

The transport layer's service request is viewed as an external event by the

network layer. This event places data (SDU) on an input poit (SAP). The network

layer processes the SDU and if the ICI causes internal events, the network layer

makes a service request of the data link layer. The similarity between the OSI

layers passing of SDUs and Zeigler's discussion of passing messages between discrete

components motivates the modular design for the Packet Radio Network simulation.

The most difficult task in the design process was determining which components to

model and the level of abstraction needed. The problems encountered during the

design process and the attempted programming will be discussed in the Chapter IV.

The design solution chosen is the next topic of discussion.

3.3 Overview of the Design

As discussed previously, a packet radio network consists of a group of Packet

Radio Units (PRUs). Each PRU consists of a computer, a Terminal Node Controller

(TNC), and a transceiver. The computer may be of any brand name and running

any operating system as long as it has some way to communicate with the TNC.

The TNC may be from various vendors and can support different protocols. The

broadcast radio may be from any vendor and support various frequencies. The

diversity of products makes it necessary to construct a simulation model based on

3-4

IUI

1I D"N z ==E J

Figure 3.1. Figure ilustrating PDU, SDU, and ICI Passing.

3-5

behavioral implementations of the components. For the purpose of this thesis, the

collection of all of these components will be called a Node.

The simulation design consists of multiple Nodes passing messages to each other

through another component called a Channel. The Channel will take the messages

from the Nodes and distribute them to the other Nodes in the simulated network.

As the simulation progresses, data about the message traffic will be collected by a

Monitor. The data collected will be analyzed upon completion of the simulation.

3.4 The Channel

The logical place to start is the bottom at OSI layer one, the physical layer. In

the specific case of a packet radio network, the physical layer deals with radios and

the physical transmission medium, the free space. The module used to model this

layer is referred to as the Channel. The Channel provides only one service which

is broadcasting of frames between Nodes. The Channel must know which nodes can

hear other nodes, and this information is provided by the Connectivity Matrix. The

two dimensional Connectivity Matrix is indexed by node identifiers. Node identifiers

could be unique alphanumerics, as in Figure 3.2 or callsigns e. g. AF8EN, AF8LS,

WPA4B . Each element would be a "1", (source can hear destination), or a "0",

(source can not hear destination).

Xmt.\Recv. A B C D
A 1 0 1 0
B 0 1 0 1
C 1 0 1 1
D 0 111

Figure 3.2. Connectivity Matrix

In this example of the Connectivity Matrix, Figure 3.2, node A can hear itself

and node C, but can not hear nodes B and D. This matrix holds the network's

topology. Some might argue that this makes the Channel too smart since it should

only be responsible for the transmission of frames to nodes. Perhaps this information

3-6

should be kept by the simulation manager or the nodes. However, by examining a

network which uses cabling to connect its nodes, it becomes obvious that it is the

physical connections that determine the network's topology. Thus the Channel is

the appropriate place for this information.

The frame is the basic unit sent over the transmission medium and the Channel

must know its source in order to route it properly. Therefore, the frame must contain

a field, Transmit-Source, which holds the node identification of the transmitter.

When the Channel receives a request to broadcast a frame, it will examine the

Transmit-Source field, find the appropriate row of the Connectivity Matrix, and

pass a copy of the frame to all the nodes (except the source) that can hear it.

For example, Node C has a packet to send to Node D, see Figure 3.3. Node C

sets the TransmitSource field of the frame to "C" and places the packet in the

frames data field. Node C requests the Channel to broadcast the frame, passes

the frame to the Channel. The Channel examines the Transmit-Source field and

finds "C" is the source. The Channel looks through the transmitter index of the

Connectivity Matrix, Figure 3.2. When it finds the row corresponding to "C" as the

transmitter, it indexes through the receivers to see which Nodes can hear Node C. It

then makes a copy of the frame for each of these Nodes, Nodes A and D. A copy is not

made for Node C because a Node can not receive frames while it is transmitting. It

is necessary to make copies of the frame instead of passing it by reference to the

nodes, otherwise they all would be modifying the same frame.

This method of passing frames using the Connectivity Matrix implies that the

Channel has no propagation delay and is error free. Unfortunately, neither of these

is a realistic assumption. There is a significant amount of time spent in transmitting

and receiving a frame since we are working with radio data rates of 300 or 1200

baud. Furthermore, if the distance between two connected nodes is large enough,

there will be a delay introduced by radio wave propagation through the free space.

3-7

Node C Tramptft-Source
2

NODE C

3

.. *
.......

.........

... %
..

... Ix I

4

4 Transmi -Source

v
NODE C

n -Soume

NODE C

Node A Node D

Figure 3.3. Example of Nodes passing a frame through the Channel, broadcasting

3-8

For the purposes of this thesis the time spent transmitting and receiving plus the

propagation delay will be referred to as the delivery delay.

I_ Frame Size in Bits
Radio Data Rate (Baud) 152 (Minimum) 2656 (Maximum)

300 0.506 seconds 8.85 seconds
1200 0.126 seconds 2.213 seconds

Table 3.2. Limits on Packet Transmission Delays

The transmission delays shown in Table 3.2 are large compared to the delays

caused by radio wave propagation between nodes. Therefore the delivery delay need

only consider the transmission delays. However, if the data rates increase to 9600

baud and possibly 56000 baud, the transmission delay will reach the same magnitude

as the propagation delay and thus the delivery delay would need to consider both.

Assuming that propagation delay is negligible means that the moment a node

begins transmitting another node begins receiving. Then the transmission delay

needs to be counted only once and can be simply realized at the delivery stage of

the Channel. At this point, the frame definition must go through another iteration,

adding on a field containing its length, PrameLength. The Channel would examine

this field prior to passing the frame to the destination Node to determine the appro-

priate delivery delay. It would schedule the passing of the frame to the Node at the

appropriate simulation time. By placing this delay in the Channel, the propagation

delay can be included in the delivery delay calculation, if it becomes necessary.

The other assumption was the Channel was error free. To correct this erroneous

assumption, the concept of the Probability of Bit Error (Pb) Matrix is introduced

(please see Figure 3.4). The Pb Matrix is similar in construction to the Connectiv-

ity Matrix except the elements contain a Pb threshold for the transmitter receiver

pair. The Pb Matrix works as follows: When the Channel receives a frame for broad-

casting it reads the frames FrameLength and Transmit-Source fields, calculates the

probability of frame error for the given frame length and Pb Matrix entry, and then

3-9

Xmt.\Recv. A B C D
A 0 0 2.46E-10 0
B 0 0 0 3.67E-15
C 2.46E-10 0 0 2.171E-13
D 0 3.67E-15 2.171E-13 0

Figure 3.4. Pb Matrix

determines if the frame is in error. This is accomplished by using a random number

generator with the probability distribution for the type of channel modeled. If the

number returned when the random number generator is called exceeds the proba-

bility of frame error then the Channel will mark the frame. If only one copy of the

frame is used for all the nodes, then the last calculation of frame error would apply

to all the receiving nodes. Therefore, it is necessary to make copies of a frame for

each receiving Node during the broadcasting process. In order to mark the frame as

being in error, another field must be added to our definition of a frame. This new

field will be called FrameError and can use a simple toggle switch to indicate error

or no error.

There axe other control items that need to be addressed concerning the interface

between the Channel and Node modules. The first is that of carrier sensing. In the

current scheme of packet radio, each node listens before it transmits. If the node does

not hear anything, it transmits. The Channel must be able to let each Node know if

another Node that it can hear is transmitting. This is accomplished by telling each

node that can hear a particular frame transmission to set a carrier flag associated

with that Channel. At the instant when the frame is received by the Channel, it

sets a carrier flag, and makes a copy of it for the receiving Node. The carrier flag is

cleared at the same time the Channel is scheduled to deliver the frame to the Node.

The interaction between the Nodes and the Channel controls the Nodes access to

the Channel.

Another control item to be addressed is that of frame collisions. If two or more

nodcs decide to transmit at exactly the same simulation time a collision occurs. Since

3-10

the radio can not listen while it is transmitting, handling a collision is not as simple

as with an Ethernet transceiver, which continues to listen on the cable while it is

transmitting. If it hears another signal during its transmission a collision is detected,

transmission is terminated, and a special signal is sent over the cable indicating a

collision. In packet radio, however, the radio switches between transmit and receive

so the only way a collision is detected is by not receiving an acknowledgement for a

packet. However, for purposes of this project, the discrete event simulation frames

are delivered and received sequentially and instantaneously. At the time a frame is

scheduled to be delivered to a Node the whole frame is sent at once by the Channel.

The whole intent of introducing the delivery delay was to simulate the real world

delay encountered in transmitting and receiving. Yet striving for realism creates

another problem, the problem of how to deal with frame collisions.

Once again the two-dimensional matrix appears to be a feasible solution. The

Collision Matrix could be indexed by node identifiers and each element composed

of a FrameDelivery-Pending flag and the Time-ofNextDelivery. Along with this

matrix, a Collision Array indexed by node identifiers is needed. Each element of the

array requires a Collisionndicator flag and the CollisionEnd-Time. Each element

of the matrix and array is initialized to zero. When a frame is received from Node C,

by the Channel for broadcasting, the Channel sets the Frame-_Delivery-Pending flag

and sets the Time-ofNextDelivery equal to the current simulation time plus the

transmission delay (Figure 3.5).

At the same simulation time that the frame is originally processed by the Chan-

nel, it examines the row of the Collision Matrix that corresponds to the receiving

node. In this particular case there are no frame deliveries pending for this destination

node (Figure 3.5). This results in the Collision Array looking like Figure 3.6. When

the next frame is transmitted from Node B, the Channel checks the Connectivity

Matrix, Figure 3.2. The Channel would copy the frame and deliver to Node D. At

the same simulation time the Channel updates the Collision Matrix as in Figure 3.7.

3-11

Xmt.\Recv. A B C D
A 0 0 0 0

0.0 0.0 0.0 0.0
B 0 0 0 0

0.0 0.0 0.0 0.0
C 1 0 0 1

10.0 0.0 0.0 10.0

D 0 0 0 0
0.0 0.0 0.0 0.0

Figure 3.5. Collision Matrix - transmission of frame from C

A BIC D
Collision-Indicator 0 0 0 0
CollisionEndTime 0.0 0.0 0.0 0.0

Figure 3.6. Collision Array

Once the matrix has been updated, the Channel examines the entire column corre-

sponding to the receiver to determine if there are any other frames pending delivery.

This time there is another frame pending delivery to Node D. The Channel then

compares the two PendingDeliveryTimes to see which is greater, it sets the Col-

lisionEndTime equal to the greater time, and sets the Collision-Indicator in the

Collision Array. This results in a Collision Array like Figure 3.8.

When the simulation time comes to deliver the pending frames, the Channel

should check the Collision Array. If the Collision-Indicator is set, it should compare

the Collision-End_-Time with the current simulation time. If the current simulation

time is less than the Collision-EndTime, the Channel should discard the frame. If

the current simulation time is greater than the CollisionEndTime, the Channel

should dear the Collision-Indicator, zero the CollisionEnd_-Time, and deliver the

frame to the receiver. Once the frame is delivered, the Channel should reset the

Collision Matrix element corresponding to the transmitter receiver pair, unless there

is another frame pending delivery from this same pair. The Channel could tell if the

3-12

Xmt.\Recv. A B C D
A 0 0 0 0

0.0 0.0 0.0 0.0
B 0 0 0 1

0.0 0.0 0.0 9.367
C 1 0 0 1

10.0 0.0 0.0 10.0
D 0 0 0 0

__ _ 0.0 0.0 0.0 0.0

Figure 3.7. Collision Matrix - transmission of frame from B

CollisionIndicator 0 0 0 1
CollisionEndTime 0.0 0.0 0.0 10.0

Figure 3.8. Collision Array - after collision is detected between the transmissions
of nodes B and C

matrix reflected another frame delivery (other than the one just made) by comparing

the Time-ofNextDelivery with the current simi-ation time. If they are equal, then

the frame just delivered was the one indicated by the matrix. If the simulation time

is greater, there is another later frame awaiting delivery from the same source and

the matrix element should not be changed.

The reasoning behind the design of the collision mechanisms is necessary for

clarity. It is not unreasonable to change the Time-ofNextDelivery every time the

transmitter requests the Channel to broadcast a frame. This is because a node can

only transmit one frame at a time, thus consecutive transmissions from the same

node could not collide with one another. All of the frames transmitted prior to the

last one transmit without collision. If, however, another node transmits while there

are a number of pending delivers for this receiver, the CollisionIndicator is set at the

start of the interfering transmission so that any frames pending delivery after this

would be discarded. When a collision occurs at one receiving node, it does not have

to occur at all the receiving nodes. If only one copy of the frame is used, discarding

3-13

it leaves nothing to deliver to the dear nodes. Making a copy of the frame for each

receiving node prior to delivery appears to be a sensible approach to prevent loss

through automatic discard.

The collision mechanism also resolves the problem of hidden nodes in a packet

radio network. Resolution occurs when the Channel examines the column of the

Collision Matrix corresponding to the receiver and gets a broadcast request. In this

example, Node B can talk to Node D and Node C can also talk to Node D, but

Node B and Node C can not talk to each other, as shown in Figure 3.9. When

Xmt.\Recv. A BICID
A 1 0 1 0
B 0 1 0 1
C 1 0 1 1
D 0 1 1 1

Figure 3.9. Connectivity Matrix

Node C transmits to Node D, the Channel would ask Node D to set its carrier

flag. Thus Node D would not be able to transmit until the carrier flag was deared.

However, Node B remains unaware that Node C is transmitting to Node D. As far

as Node B is concerned, it is free to transmit. When it transmits, Node A will hear

it and the Channel will have Node A set its carrier flag. Yet, Node D is currently

receiving something from C and the two transmissions collide at Node D only. The

collision affects only the receiving node involved.

An essential component of the Channel is a Node Array for keeping track of

the Node modules' unique identifiers and memory reference variables. The Node

Array is created at run-time and each element of the array consists of a unique Node

identifier, possibly the callsign, and the corresponding memory reference variable

(Figure 3.10). By creating the Node Array at run-time its size is governed by the

number of Nodes the user requests, thus making the simulation's scenarios dynamic.

3-14

A B C D
identifier WA3ULK-10 W8PUG-1 KA9R-13 OU8PI-2
ref. variable 0x54984h 0x328c9h Oxlac4h Ox2ae9h

Figure 3.10. Node Array

Note that all of the matrices and arrays in this thesis use the indices of A,

B, C, and D. This is not meant as an implementation detail, but to show that

all the components should be indexed by the same data type. When the Channel

searches for information concerning a given Node, it will use the same variable to

seach in each component. The Channel can locate the particular Node it wishes to

communicate with in the Node Array. It will set a variable equal to the memory

reference variable for that Node, and pass that variable to a generic communications

routine. The Channel thus has only one set of routines to communicate with all of

the Nodes in the simulation.

Another method for giving the Channel this knowledge about the Nodes is to

program a unique identifier for each Node into the Channel. With this method the

simulation would need to be recoded and ref-ompiled every time a new scenario is

analyzed. Unfortunately, this forces the user to be knowledgeable about the simu-

lation language, and to have access to a compiler for the specific language. Thus

far the researcher has attempted to keep the discussion of the Channel design at an

abstract level to avoid specifying implementation details. This was done to facilitate

the possibility of creating a simulation using any language or any hardware platforra

desired.

3.5 The Nodes

The Channel knows about the Nodes, through the Node Array, and will com-

municate with them in this simulation. In Section 3.4 the discussion of the Channel

defined a field of the Node module, called the carrier flag. Recall from Section 3.3 that

a Node is defined as a group of components, a computer, a TNC, and a transceiver.

3-15

Since the TNC is the component that will listen to the radio channel for a transmis-

sion, it is appropriate to assign it the carrier flag. In the real world the broadcast

radio actually does the listening to the channel for the TNC. However, the radio

only acts as an interface between the TNC and the channel. Also for the purposes

of this project, it is not necessary to simulate the method of transmission, e. g. Fre-

quency Modulation (FM), Amplitude Modulation (AM), etc.. This factor is taken

into account in the Channel's Probability of Bit Error Matrix. Therefore, the radio's

listening function and the carrier flag are given to the TNC.

3.5.1 TNC Module If both AFITPAC and NOS will be analyzed using this

simulation, then two types of a TNC must be designed: 1) a full implementation

which includes the AX.25 protocol' and 2) a limited implementation which includes

the KISS protocol 2 . AFITPAC expects the TNC to provide all of the services in

the AX.25 data link layer and expects to be able to interface with the TNC using

the TNC's command syntax. The NOS package expects to have a TNC operating

using the KISS protocol and all of the higher level protocols, e. g. IP, AX.25, High

Level Data Link Control (HDLC), etc., are found in the NOS software modules. The

original purpose of this thesis was an interface the AFITPAC software, therefore the

focus will be placed on the first type of TNC design.

AX.25 Protocol Module

Control Field Handler Basically, AX.25 is a bit level protocol and

depends on bit sequences to function. The Control Field processing is the only

part of the AX.25 protocol necessary to implement at this level of detail. All other

protocol parts can be implemented using higher level data structures and behavioral

modeling. Since the control field is always eight bits long, it makes sense to create

it as a fixed array of length eight. Each element of the array can be any data type

1For protocol information see Appendix A, Page A-i
2 For protocol information see Appendix A, Page A-3

3-16

supported by the implementing language. For this project a boolean data type,

TRUE or FALSE, is used, since this most closely resembles the behavior of a bit to

be either 1 or 0. It is then possible to create and analyze these bit patterns for every

packet transmitted and received. The receiving Node can respond according to the

AX.25 protocol once the Control Field has been examined. Before a receiving TNC

should bother to examine the packet's Control Field, it must determine if the packet

is destined for this Node.

Packet Destination Address Handler When a Node's TNC re-

ceives a packet, it checks the addresses in the Destination Field and the elements of

the Digipeater3 Array. If the Destination Field matches the Node's address the TNC

proceeds with processing the packet, compares it's Node's address with the elements

of the Digipeater Array. The TNC uses the following algorithm for the comparison

to assure that the function adheres to the AX.25 standard:

1. If there are no more elements in the Digipeater Array then exit

2. If there are elements in the Digipeater Array then either choose:

(a) The selected element does not match this Node's address then

i. If last character in the element is an "H" then select next element

and go to 1

ii. If last character in the element is not an "H" then discard the packet

and exit

(b) If the selected element does match this Node's address then

i. Add an "H" to the end of this element and place back in the array

ii. Set the Transmit-Source field of the frame to this Node's address

3 Digipeater - "digital repeater, a device that receives, temporarily stores and retransmits
(repeats) packet-radio transmissions that are specifically addressed for routing through the
digipeater(12)

3-17

iii. Request the Channel to broadcast this frame

iv. Dispose of the local copy of this frame and exit

The "H" is added on to the end of the element that matches this Node's address

to indicate that this packet Has-Been-Repeated. The "H" was chosen to coincide

with the AX.25 name for this bit, the "H-bit". If the frame happens to return to

this node, the TNC will not recognize this Digipeater Array element, because it is

not an exact match for its own address.

The order in which the elements of the Digipeater Array are scanned is im-

portant because it corresponds to the order in which the packet is routed through

the digipeating Nodes. If the Node's address does not match the selected element

and this element ends in an "H", then TNC can go on to the next element. This

procedure prevents the packet from being digitally repeated by two nodes at the

same time.

For example, given the Connectivity Matrix in Figure 3.11 and that Node B

needs to send a message to Node A, Node B has two routes to get the message to

Node A: 1) from Node B to Node D to Node C to Node A (B- > D- > C- > A)

and 2) from Node B to Node C to Node A B- > C- > A). Node B does not

know about the direct connection to Node C and so it decides to use the first route.

Figure 3.12 shows an example of the AX.25 packet header.

When Node B asks the Channel to broadcast this packet 4 , Nodes D and C

receive a copy. Node D finds that its address is the first in the Digipeater Array

and therefore Node D digitally repeats the packet. Node C processes the packet

and finds Node D's address is the first element in the array, discovers no "H" at the

end of the element, and discards the packet. Node D now requests the Channel to

broadcast this packet whose AX.25 packet header is like Figure 3.13. Nodes B and

4The word packet is used here to remain consistent with the level of the design. The Node would
still send the Channel a frame and all the fields associated with it.

3-18

Xmt.\Recv. A B CD
A 1 0 1 0
B 0 1 1 1

C 1 0 1 1
D 0 1 1 1

Figure 3.11. Connectivity Matrix for Digital Repeating Example

Destination Source Digipeater
Address Address Array

A B D I C

Figure 3.12. AX.25 packet Address Header for Digital Repeater Example

Destination Source Digipeater
Address Address Array

A B DH I C

Figure 3.13. AX.25 packet Address Header for Digital Repeater Example

C receive a copy of the packet. Node B does not find its address anywhere in the

header, because a receiving node does not examine the Source Address and discards

it. Node C examines the Digipeater Array, finds DH in the first element, it finds

that the element ends in an "H", and finds its address is the next element in the

array. Node C processes the packet for digital repeating and makes a request to the

Channel to broadcast this packet, whose AX.25 packet header looks like Figure 3.14.

Nodes B, D, and A all receive a copy of the packet. Node B discards the packet

Destination Source Digipeater
Address Address Array

A B DH CH

Figure 3.14. AX.25 packet Address Header for Digital Repeater Example

as before. Node D examines the Digipeater Array, it does not find its address in

any of the elements and, therefore discards the packet. If Node C were allowed

to digitally repeat the first packet (because its Node address was in the Digipeater

3-19

Array) Node A would have received two copies of the same packet. Node A only

receives one copy of the packet and proceeds to analyze the Control Field.

Behavioral modules could be designed for the rest of the AX.25 protocol in a

similar fashion to the digital repeating module. The digital repeating function of the

TNC is the protocol's simplest part because it does not require any acknowledge-

ments or control mechanism handling.

PC Interface Module This way of handling the digital repeating algo-

rithm using the "H" bit is an example of how protocol parts can be behaviorally

implemented using higher level data types. The method detailed only deals with

the data link layer protocol found in the TNC. The interfacing of the TNC's data

link layer with the rest of the model has not been addressed. AFITPAC expects

to control the TNC by using the normal command line syntax. For example, when

AFITPAC establishes a connection to another PRU it literally sends "c NODE1

via REPEATERI", one character at a time to the TNC. AFITPAC uses assembly

language routines to communicate with the port on the PC connected to the TNC.

Therefore, AFITPAC could be link to the simulation by constructing a PC interface

module that would replace these functions, e.g. Sersendo, Ser-recvo, etc., and then

translate the TNC command syntax into service requests of the TNC simulator.

3.5.2 PC Module In the real world AFITPAC and NOS would operate on

a personal computer. Thus the module in which these packages operate is called

the PC Module. The PC module contains the software package to be analyzed, an

interface to the programs for the simulator, and a simulated user. The simulator's

interface to the programs is needed so that the parameters of the software packages

can be changed. This interface will either require modifications to AFITPAC and

NOS or use direct calls to the packages' internal functions.

The changing of these parameters would effect the performance of the packages

automated functions and thus the amount of traffic generated on the network. It

3-20

is not necessary however, to interact with the software to generate normal message

traffic. The simulation employs a user to test total efficiency and efficacy, and is

designed as follows:

1. A random number generator to simulate the rate of traffic generation. Using

diverse random distributions, diffcrent traffic loads can be simulated. Most

random number generators return a value between 0.0 and 1.0. When the

returned value exceeds a defined threshold a message transmission occurs.

2. A random number generator to simulate the length of the traffic generated.

In this case, the distribution is partitioned into bins from zero to a defined

maximum message length. When the value returned by the random number

generator falls in a bin, the size of the message is determined.

3.6 Summary

The chapter opened with a discussion of modularity and how it related to

simulation design. The concept of discrete components was introduced to provided

a mechanism by which a modular simulation could be designed. The layers of the OSI

network model were associated with the discrete components to demonstrate how

a computer communications network could be simulated. By examining the layers

of the network model a design for a packet radio network simulation was proposed.

This simulation model included a Channel module and a Node Module. The Channel

Module was broken down in to its subcomponents: Connectivity Matrix, Probability

of Bit Error Matrix, Collision Matrix, and Node Array. Each one of these was

described in detail. In describing the Channel module a message unit called a frame

was developed. The frame was the message unit passed between Nodes by the

Channel. The Node module was also divided up into its subcomponents: TNC

module and PC module. The TNC was decomposed further into an AX.25 module

and a PC Interface module. The AX.25 module contained the Control Field Handler,

which evaluated the contents of a packets control field. It also includd an Packet

3-21

Destination Address Handler, that determined if the Node was the destination for a

received packet or ii the Node was to digitally repeat the packet. The remainder of

the AX.25 protocol was not explicitly discussed, however it was mentioned that it

could be implemented behaviorally using higher level data types. The PC Interface

module was introduced as a gateway between the software packages being analyzed

and the simulated TNC. A brief description was then given of the subcomponents

of the PC module: Interface to Programs and simulated user.

This doses the discussion of a packet radio network simulator design. The Node

module components are defined in less detail because of developmental problems in

the early stages of their design. As the development cycle progressed the details

of the design suffered when coding problems occurred. The exact nature of these

problems is discussed next, in Chapter IV.

3-22

IV. CONCLUSIONS & RECOMMENDATIONS

4.1 Introduction

Chapter IV begins with a description of problems encountered with the PC-

DOS version of MODSIM 1 1 TM . These problems slowed the development of a work-

ing simulation and eventually led to the project's end. Following the discussion of

problems, the author makes recommendations for further research and development.

4.2 Problems with MODSIM IM -

The first problem was that a major concept in the MODSIM HTM language did

not function as documented in the manual. The problematic concept was EXPORT-

ing Object types in the definition module for use by other Objects. If, for example,

a "parent" object was to tell another object, called "child", to perform a function,

MODSIM 1 1 TM requires that the reference variable used to command the child to

do something be of type "child". It is desirous to define the "parent" as having a

field of type "child" object. Of course, the "child" object will want to respond to

the "parent" object, therefore, it will need to have a field of type "parent" object.

The MODSIM ITM manual states each object should EXPORT its definition for

use by the other object. This does not work! Attempting to compile two objects,

each having a field of the other object type, results in a cyclic definition error.

After some attempts to work around this problem, the manufacturer was con-

tacted. CACI Products Company responded that this was indeed a known problem

with the compiler. There are no plans to correct the problem because they no longer

plan to support the DOS version of the package. They were able, however, to pro-

vide a workable solution to the problem. Define the "parent" and "child" objects as

having a field of type ANYOBJ, which is a generic reference variable to an object.

However, do not tell an ANYOBJ to do anything, because the information about

4-1

its methods are unknown. In order to use this solution, IMPORT the object type

into the implementation module. For example the "parent" object's implementa-

tion module would contain the line; FROM childmodule IMPORT ChildObject Type;.

Then the "parent" object coerces ANYOBJ into a "child" object type, a concept

similar to that of type casting in C++ and ADA. Then use this coerced variable

to tell the child to do something. This solution did work and allowed for further

simulation development.

The second problem encountered was with the use of the monitor objects.

These are a special class of objects which MODSIM IITM provides for the collection

of data concerning records and fields. "Monitoring may be specified as being left,

right, or left and right. Left monitoring means that any time the variable or field is

updated monitoring methods that you have specified will be invoked. Right moni-

toring invokes the specified methods whenever the variable or field is referenced.(3)"

There are three advantages of using monitor class objects; 1) less code is needlcd for

monitoring variables and fields, 2) changes to the monitoring functions only have to

be made in the monitor's definition, and 3) the monitoring functions can be enabled

or disabled without effecting the simulation. The monitor objects were to be used

to track frames in the PRNET simulation. An attempt to monitor two of the same

type of variables in the same object resulted in the simulation test ending in error,

specifically "Unidentified FPE". The MODSIM IITM manual only repeated what the

error messages said on the screen and provided no further explanation. Confidence is

high that monitoring two variables is the problem because when one of the monitors

is removed the test program executed properly.

The most challenging problem came when testing out a generic record queue

and timer. The timer module tested fine, the record queue did also, but it was

the combination of the two that presented difficulties. Every time the simulation

was run it would run out of memory. A small C++ routine was written to show

the amount of available memory and interfaced it into the simulation. The record

4-2

queue was first tested to ascertain that when items were removed from the queue

that the memory was being freed. The memory was being allocated and freed just

as expected. The heap size declined as more items were created and added to the

queue and increased as they were removed and disposed. The researcher then Lested

the timer module with similar results. The combined model was a simple traffic

light having two queues (to represent the intersection), four complex records (to

represent cars), and a timer (to make the lights change). A total of twenty-three car

records and the other three objects were used. The simulation run with the memory

checker resulted in more than half of the available memory consumed or tied up.

As the simulation ran, the memory addresses were not being reused in the event

tables as expected. They simply kept increasing until there were only 144 bytes left

and the simulation halted. The computer used to execute this model has a total of

four megabytes of memory, which seemed adequate. However, it appears the DOS

extender, provided with MODSIM IITM , is used only for compiling and has no effect

on run-time modules. The entire simulation is loaded into the available base 640K of

memory on the computer. This suspicion was confirmed by the manufacturer when

they were called about running out of memory during compile time.

This simple traffic light model indicated that there would not be enough mem-

ory on a PC to run a PRNET simulation. The researcher believes that a simulation

including at least ten Nodes, would be needed to produce results of any significance.

A simulation of this size would require twenty or more record queues, twenty or more

timers, and a large number of frame records. These would just represent the basic

elements of the TNC module and does not include the remaining Node or Channel

module components. Therefore, it was decided to stop development of the PRNET

simulation on a personal computer.

4-3

4.3 Recommendations

The packet radio simulation that allows an application developer to analyze the

performance impact of their work on a packet radio network is a valuable tool and

should be pursued. Wireless networks are beginning to make their way into the local

area network arena. As the technology improves, wireless wide area networks will

become more popular. A packet radio network can provide the type of long distance

connections necessary. There is great potential for today's advanced network appli-

cations to take advantage of this medium's ability to connect nodes large distances

apart. Development of a PRNET simulation tool could be used in the development

of more bandwidth efficient protocols and more advanced applications. Therefore,

it is recommended that the development of a PRNET simulation be pursued on a

hardware platform other than a personal computer. In the researcher's opinion, if

MODSIM]ITM is available for use on a Sun-3, Sun-4, SPARC, VAX/VMS, or Unix

system that it should be used because it provides a simple interface capability to

C. If MODSIM]ITM is not available, the PRNET design proposed in this thesis

could be used to develop a simulation in ADA or other languages, which provide an

interface to C.

Once the simulation is working improvements could include elaboration of the

Channel model. The matrices, Connectivity and Pb, currently used make the as-

sumption of equal transmission power and equal reception capabilities. It would

make the Channel more realistic if the Connectivity Matrix took into consideration

transmitter power, propagation losses, and antenna gain to determine which nodes

could hear each other. Also if the Pb Matrix reflected that a radio path between two

nodes might not be two directional. This suggestion is the result of a recommen-

dation by Phil Karn to use transmitter power control to increase frequency usage.

Karn proposes that by using a channel access scheme that adjusts the power to a

level necessary to just hear the next node you need to talk to, the throughput of a

band-limited channel could be increased(13).

4-4

Another recommended modification of the simulation is to the Node modules.

Each Node could keep an array similar to that of the Channel's Node Array, except

this would be a Channel Array. By creating different channels, the simulation could

take into account simultaneous transmission in different frequency bands. Further-

more, it could be used to simulate the ability of some Nodes to provide gateway

services between different frequency channels.

An area of great interest is the security of a packet radio network. The tracing

ability of the NOS package could also be used for spying on a packet radio network.

An individual could turn tracing on and log all of the message traffic to disk for

later analysis. Both NOS and AFITPAC provide the ability to transmit encrypted

messages. However, the packet header information is transmitted in the dear, leaving

the network subject to traffic flow analysis. This problem could be resolved if the

entire transmitted packet was encrypted. The NOS package expects to see a TNC

operating in Keep-It-Simple-Stupid(7) (KISS) mode, which allows the host's software

to have control over the TNC functions at the lowest possible level(7). In this mode

of operation the TNC "simply converts between synchronous HDLC, spoken on the

full- or half-duplex radio channel, and a special asynchronous, full duplex frame

format spoken on the host\TNC link.(7)" Therefore, it is recommended that an

encryption software module or device be developed to place between the KISS TNC

and computer to provide the security measures necessary.

4-5

Appendix A. DEFINITION OF TERMS

A

AX.25 - The link-layer packet-radio protocol based on the CCITT X.25 packet-

switching protocol.(12) For complete details of the workings of the AX.25

protocol refer to , AX.25 Amateur Packet-Radio Link-Layer Protocol, Ver-

sion 2.0, October 1984(9), which is available from the American Radio

Relay League (ARRL).

C

Carrier Sense Multiple Access - (a) a channel-access arbitration scheme in which

packet-radio stations listen for the presence of a

carrier on a channel before transmitting.(12) (b)

a characteristic of network hardware that oper-

ates by allowing multiple stations to access to a

transmission medium by listening to see if it is

idle.(8) (c) when a station has data to send, it

first listens to the channel to see if anyone else is

transmitting. If the channel is busy, the station

waits until it becomes idle. When the station

detects an idle channel, it transmits a frame. If

a collision occurs, the station waits a random

amount of time and starts all over again.(19)

Channel - the module used to represent a single radio fre-

quency free space transmission medium.

Collision Matrix - a matrix used to keep track of pending frame de-

liveries to a simulation Node. It is used to com-

A-1

pensate for the instantaneous delivery of frames

to nodes in a discrete event simulation.

D

Datagram protocol- a Network-layer protocol that transfers each packet inde-

pendently along the best available route; also called con-

nectionless protocol.(12)

Delivery delay - the time it take to pass the entire contents of a packet

from transmitter to receiver. It includes transmission time,

propagation delay, and reception time.

Digipeater - digital repeater, a device that receives, temporarily stores

and then transmits (repeats) packet-radio transmissions

that are specifically addressed for routing through the digipeater.(12)

E

Ethernet Transceiver - a device which damped to a coaxial cable so that it makes

contact with the inner core. The transceiver contains the

electronics that handle the carrier detection and collision

detection. When a collision is detected, the transceiver

also put- a special invalid signal on the cable to insure

that all other transceivers also realize that a collision has

occurred.(19)

G

GILLAROO - "cryptographic board encrypts data by using a cryptographic key

(loaded from a paper tape) which converts the data into pairs of

output characters; the first character is a capitol letter between A

and P, and the second is a lower case letter between a to p. No

A-2

control characters other than pause transmission (control S), resume

transmission (control Q), and end of file (control Z) are output from

the device while in secure nwode.(15)"

H

HDLC - (High-Level Data Link Control) a link level protocol standard by

ISO. CCITT later adapted HDLC for its link access protocol (LAP)

used with X.25 networks. HDLC is increasingly important to the

Internet because Packet Switch Node (PSN) interfaces now use it

to transfer frames between the host and PSN.(8)

Hidden Nodes - a packet radio station that can be heard by only one of two other

stations that are connected; in such a situation, the two stations

that cannot hear each other transmit simultaneously, which results

in the reception of interference or a packet collision by the third

station(12).

HOP - the equivalent of an edge on a network graph. The number of

point-to-point transmissions used to deliver a message from source

to destination.

K

KISS - an acronym for "Keep It Simple Stupid," a Link-layer nonprotocol for se-

rial input and output that supports Serial Line Interface Protocol (SLIP),

written by Mike Chepponis.(7, 12)

M

MODSIM IITM - "the Modular Simulation language is a general-purpose, modu-

lar, block structured language which provides support for object-

oriented programming and discrete event simulation. It is in-

A-3

tended to be used for building large process-based discrete event

simulation models through modular and object-oriented develop-

ment techniques.(5)"

Module - any independent unit which is part of a large system. Microcom-

puter and other systems may be made from several modules. a

piece or segment of a whole; an incremental block(6).

N

Node - (a) the name of a module in this thesis that represents the collection of

a TNC, a computer, and a simulated user. (b) any terminal, station, or

communications computer in a computer network(6). (c) a junction point

within a network(12).

P

Packet - (a) In communications, a short (1000-2000 bits)

block of data prefixed with addressing and other

information for control that is used to carry in-

formation through a packet-switching-network(6). (b)The

unit of data sent across a packet switched net-

work. The term is used loosely. While some

Internet literature uses it to refer specifically to

data sent across a physical network, other lit-

erature views the Internet as a packet switching

network and describes IP datagrams as packets(8).

PING - (Packet InterNet Gropper) The name of a pro-

gram used in the Internet to test reachability

of destinations by sending them an IMP echo

request and waiting for a reply. The term has

A-4

survived the original program and is now used

like a verb as in, "please ping host A to see if

it is alive."(8)

PRNET - Packet Radio Network, a computer network con-

sisting of PRUs.

Probability of Bit Error Matrix - a component of this project used to hold the

probability of bit error between a pair of PRUs.

Probability of bit error is the chance that a

transmitted bit will be received incorrectly.

PRU - Packet Radio Unit, each unit consists of a ter-

minal or computer, a TNC, and a radio transceiver.

R

Routing Table - a table used to track assignments of communications paths for

message delivery(6)

T

Terminal Node Controller (TNC) - an Amateur Radio packet assembler/disassembler;

it may or may not include a modem(12)

Topology - In network terminology, describes the physi-

cal or logical placement of nodes (stations) in

a computer network system or configurations(6)

Transmit Queue - a list used to keep track of the simulation

frames waiting to be transmitted by the TNC.

A-5

U

Uuencode\Uudecode - encode/decode a binary file for transmission via mail. Out-

put from uuencode is all ASCII printable text from a binary

input file. Output from uudecode is a binary file from an

uuencoded file.

A-6

Bibliography

1. Bausbacher, Pete and David Young. PC-NETSIM: A PC Based Network Simu-
lation. SRNTN N00140-87-C-8903, Richardson, Texas: Rockwell International
Collins Defense Communications, July 1989 (AD-A213-203).

2. Bausbacher, Peter E. The Link Performance Model of a Packet Radio Network
Simulator. SRTNTN N00140-87-C-8903, Richardson, Texas: Rockwell Interna-
tional Collins Defense Communications, March 1989 (AD-B132-447Y).

3. Belanger, Ron, et al. MODSIM I1M The Language for Object-Oriented Simu-
lation: User's Manual. CACI Products Company, La Jolla, California, January
1990. Revision 10.

4. Belanger, Ron, et al. MODSIM IfrM The Language for Object-Oriented Simu-
lation: Refclence Manual. CACI Products Company, La Jolla, California, June
1990. Revision 6.

5. Belanger, Ron and Alasdar Mullarney. MODSIM If T M The Language for
Object-Oriented Simulation: Tutorial. CACI Products Company, La Jolla, Cal-
iforni. January 1990. Revision 8.

6. Bolander, Donald, et al., editors. The New Lexicon Webster's Dictionary of the
English Language (Deluxe encyclopedia edition Edition). New York: Lexicon
Publications, Inc., 1990.

7. Chepponis, Mike and Phil Karn. "The KISS TNC: A simple Host-to-TNC
communications protocol." In ARRL/CRRL Amateur Radio 6th Computer Net-
working Conference, pages 38-43, Newington, CT: The American Radio Relay
League, Inc., 1987.

8. Comer, Douglas E. Internetworking with TCP/IP: Principles, Protocols, and
Architecture (First Edition). Englewood Cliffs, New Jersey: Prentice Hall, Inc.,
1988.

9. Fox, Terry L. AX.25 Amateur Packet-Radio Link-Layer Protocol: Version 2.0,
October 1984. Newington, CT: American Radio Relay League, Inc., 1984.

10. Geier, Captain James T. Automatic/Adaptive Routing Algorithm for
the Air Force Logistics Command Packet Radio Network. MS thesis,
AFIT/GE/ENG/90S, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, July 1990.

11. Geier, Captain James T., et al. "Network Routing Techniques and Their Rele-
vance to Packet Radio Networks." In ARRL/CRRL Amateur Radio 9th Com-
puter Networking Conference, pages 105-117, Newington, CT: The American
Radio Relay League, Inc., 1990.

BIB- 1

12. Horzepa, Stan. Your Gateway to Packet Radio (Second Edition). Newington,
Connecticut: American Radio Relay League, 1991.

13. Karn, Phil. "MACA - A New Channel Access Method for Packet Radio."
In ARRL/CRRL Amateur Radio 9th Computer Networking Conference, pages
134-140, Newington, CT: The American Radio Relay League, Inc., 1990.

14. Lebano, Captain Tito Nicola. A TCP/IP Gateway interconnecting AX.25
Packet Radio Networks to The Defense Data Network. MS thesis,
AFIT/GCS/ENG/88D-25, School of Engineering, Air Force Institute of Tech-
nology (AU), Wright-Patterson AFB OH, December 1988.

15. Marsh, Captain Steven L. Integration of the Air Force Logistics Command
Packet Radio Network.. MS thesis, AFIT/GE/ENG/89D-29, School of Engi-
neering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1989.

16. Spiegel, Mitchell G. "Modeling Computer Networks," IEEE Network: The
Magazine of Computer Communications, 2(4):5 (July 1988).

17. Stallings, William. Department of Defense Protocol Standards, Volume 3
of Handbook of Computer-Communications Standards. Indianapolis, Indiana:
Howard W. Sams & Company, 1988.

18. Stallings, William. The Open Systems Interconnection [OSI] Model and OSI-
Related Standards, Volume 1 of Handbook of Computer-Communications Stan-
dards. Indianapolis, Indiana: Howard W. Sams & Company, 1989.

19. Tanenbaum, Andrew S. Computer Networks (Second Edition). Englewood
Cliffs, New Jersey: Prentice Hall, Inc., 1988.

20. Taris, Captain William J. Design and Development of a Computer-Based Mes-
sage Transfer System for The Air Force Logistics Command Packet Radio Net-
work. MS thesis, AFIT/GE/ENG/88D-45, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, December 1988.

21. Wade, Ian. "The Definitive Primer for the KA9Q Network Operating System."
A published book by the same author and title is due out during the fourth
quarter of 1991, September 1991.

22. Zeigler, Bernard P. "Hierarchical, modular discrete event rr delling in
an object-oriented environment," SIMULATION, 49(5):219-230 (November
1987).

BIB-2

